Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37827167

RESUMO

Objective. The performance of silicon detectors with moderate internal gain, named low-gain avalanche diodes (LGADs), was studied to investigate their capability to discriminate and count single beam particles at high fluxes, in view of future applications for beam characterization and on-line beam monitoring in proton therapy.Approach. Dedicated LGAD detectors with an active thickness of 55µm and segmented in 2 mm2strips were characterized at two Italian proton-therapy facilities, CNAO in Pavia and the Proton Therapy Center of Trento, with proton beams provided by a synchrotron and a cyclotron, respectively. Signals from single beam particles were discriminated against a threshold and counted. The number of proton pulses for fixed energies and different particle fluxes was compared with the charge collected by a compact ionization chamber, to infer the input particle rates.Main results. The counting inefficiency due to the overlap of nearby signals was less than 1% up to particle rates in one strip of 1 MHz, corresponding to a mean fluence rate on the strip of about 5 × 107p/(cm2·s). Count-loss correction algorithms based on the logic combination of signals from two neighboring strips allow to extend the maximum counting rate by one order of magnitude. The same algorithms give additional information on the fine time structure of the beam.Significance. The direct counting of the number of beam protons with segmented silicon detectors allows to overcome some limitations of gas detectors typically employed for beam characterization and beam monitoring in particle therapy, providing faster response times, higher sensitivity, and independence of the counts from the particle energy.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/métodos , Prótons , Silício , Ciclotrons
2.
J Synchrotron Radiat ; 26(Pt 4): 1226-1237, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274448

RESUMO

Recent advances in segmented low-gain avalanche detectors (LGADs) make them promising for the position-sensitive detection of low-energy X-ray photons thanks to their internal gain. LGAD microstrip sensors fabricated by Fondazione Bruno Kessler have been investigated using X-rays with both charge-integrating and single-photon-counting readout chips developed at the Paul Scherrer Institut. In this work it is shown that the charge multiplication occurring in the sensor allows the detection of X-rays with improved signal-to-noise ratio in comparison with standard silicon sensors. The application in the tender X-ray energy range is demonstrated by the detection of the sulfur Kα and Kß lines (2.3 and 2.46 keV) in an energy-dispersive fluorescence spectrometer at the Swiss Light Source. Although further improvements in the segmentation and in the quantum efficiency at low energy are still necessary, this work paves the way for the development of single-photon-counting detectors in the soft X-ray energy range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...